Бестрансформаторный блок питания. Расчет. Ч2

   

Введение

   Итак, давайте разберем последовательность расчета бестрансформаторного источника питания, рассмотренного в предыдущей статье. Описанная метода не претендует на истину в последней инстанции и может отличаться от других источников. Дополнительную информацию по такой схеме можно почерпнуть на зарубежных ресурсах, погуглив в сети запрос "capacitor power supply".

бестрансформаторный источник питания

рис. 1

1. Рассчитываем ток нагрузки

   Первое от чего мы должны отталкиваться при расчете бестрансформаторного источника питания - это ток нагрузки. На рисунке 1 он обозначен как Iam, а в качестве нагрузки выступает резистор R3. Заменим этот резистор небольшой схемой с микроконтроллером и определим потребляемый ею ток. 

небольшая схема в качестве нагрузки

рис. 2


Сделать это можно двумя способами: 

- путем расчета, просуммировав примерное потребление всех компонентов схемы,
- с мощью амперметра включенного между источником напряжения и нашей схемой.

   Второй способ, конечно, будет точнее, но он осуществим только при наличии собранной схемы. Попробуем выполнить теоретический расчет.
  
   В схеме на рисунке 2 три основных потребителя - стабилизатор 7805, микроконтроллер ATtiny13 и светодиод. Для простоты положим, что микроконтроллер при подаче питания всего лишь зажигает светодиод, а потом крутится в бесконечном цикле.
   Ток покоя стабилизатора 7805 по даташиту равен 5 мА (параметр quiescent current). При изменении тока нагрузки и входного напряжения значение тока покоя меняется на 0.5 - 0.8 мА. Значение небольшое и можно им пренебречь.
   Оценить потребление микроконтроллера ATtiny13 можно по графику Active Supply Current vs. VCC, представленнму в даташите в разделе Electric Characteristics. Допустим, у нас напряжение питания 5 Вольт, а тактовая частота - 9.6 МГц. При таких условиях attiny13 потребляет в активном режиме 5.5 мА.
Ток светодиода рассчитываем по формуле:

Iled = (Upin - Uled)/R2

где Upin - напряжение логической единицы на выводе микроконтроллера, В; Uled - прямое падение напряжения на светодиоде, В.

   Для зеленого светодиода прямое падение напряжения равно примерно 2 В, Upin примерно 5 В, значит ток через светодиод будет равен:

Iled = (5 - 2)/330 = 9 мА.

   Если быть честным, то при любом вытекающем токе напряжение на выводе микроконтроллера будет меньше напряжения питания. В чем можно убедиться, изучив график I/O Pin Source Current vs. Output Voltage (Low Power Ports, VCC = 5V), представленный в даташите. При токе 9 мА, напряжение на выводе микроконтроллера ATtiny13 будет примерно 4.8 В. Но мы, опять таки, не учитываем такие мелочи в расчете.

Итого: 5 + 5.5 + 9 = 19.5 мА.
Реальное значение потребляемого тока 18.6 мА.

   Как видишь, разница незначительная. Округлим расчетное значение в большую сторону и будем отталкиваться от значения Iam = 20 мА.

2. Рассчитываем входной ток источника питания

   Ток нагрузки нам известен, теперь нужно рассчитать значение тока на входе источника питания. На рисунке 1 он обозначен как Iac. В отличие от постоянного тока нагрузки, ток на входе бестрансформаторного источника питания переменный. А переменный ток характеризуется такими величинами как амплитудное и действующее значение. 
   Амплитудное значение переменного тока - это максимальное значение тока за период колебания. Действующее значение переменного тока - это такая величина постоянного тока, который за время равное одному периоду колебания переменного тока, выделит на том же сопротивлении R такое же количество тепла, что и переменный ток.
   Для переменного тока, изменяющегося по синусоидальному закону, амплитудное и действующее значения связаны следующим соотношением:

связь действующего значения тока с амплитудным

где Iac - действующее значение, А; а Im - амплитудное, А.


   Действующее значение переменного тока на входе схемы Iac рассчитывается из тока нагрузки Iam по следующей формуле:

Таким образом, ток на входе схемы будет равен:

Iac = 20*2.221 = 44,4 мA действующее значение
Im = 44*1.41 = 62.6 мA амплитудное значение

 

амплитудное значение тока и действующее

3. Определяем входное напряжение стабилизатора

   У всех линейных стабилизаторов, к которым относится и микросхема 7805, есть такой параметр как dropout напряжение - наименьшая разность напряжений между входом и выходом. Этот параметр определяет минимальное входное напряжение стабилизатора, при котором он все еще будет работать в номинальном режиме. Для микросхемы 7805 выходное напряжение равно 5 В, а типовое dropout напряжение равно 2 В. Значит минимальное входное напряжение для стабилизатора 7805 будет составлять 5 + 2 = 7 В. С учетом того, что на конденсаторе С2 напряжение будет пульсировать, 7 Вольт - это минимальное значение пульсирующего напряжения. Накинем 1 В для запаса и будем отталкиваться от значения 8 Вольт.

 что такое dropout напряжение

   В качестве стабилизатора не обязательно выбирать микросхему 7805, можно использовать то, что есть под рукой. При этом нужно учитывать следующие параметры:
- максимальное входное напряжение стабилизатора,
- максимальный выходной ток стабилизатора,
- dropout напряжение,
- максимальная рассеиваемая мощность.

4.Рассчитываем емкость сглаживащего конденсатора C2

   Нагрузка у нас запитывается от сети во время положительного полупериода входного напряжения. Во время отрицательного полупериода нагрузка получает энергию от конденсатора С2. За время отрицательного полупериода он не должен успеть разрядиться до напряжения меньше 8 В. Этого не случиться, если начальное напряжение на конденсаторе и его емкость достаточны для поддержания заданного тока нагрузки. 

   Емкость сглаживающего конденсатора рассчитывается по следующей формуле.

C > Iam/(2*f*dU),

где Iam - ток нагрузки, А; f - частота переменного напряжения, Гц; С - емкость конденсатора, Ф; dU - размах пульсаций, В.

dU = Umax - Umin

Umin у нас равно 8 В.
Umax выбираем из следующих соображений. Большее напряжение позволяет использовать конденсатор меньшей емкости, но сильнее нагружает стабилизатор, который вынужден гасить на себе остаточное напряжение. Меньшее напряжение разгружает стабилизатор напряжения, но требует конденсатор большей емкости.
Я выбрал 9.3 В.

С2 > 0.02/(2*50*(9.3 - 8)) = 0.000153 Ф = 153 мкФ

   Выбираем большее соседнее значение из ряда Е12 – 180 мкФ.
   Также не забываем про максимальное напряжение, на которое рассчитан конденсатор. Берем с полуторным или двойным запасом, например на 16 Вольт.

5.Выбираем стабилитрон VD1

   Требуемое номинальное напряжение стабилитрона равно максимальному напряжению на сглаживающем конденсаторе С2 плюс величина падения напряжения на диоде VD2, то есть:

9.3 + 0.7 = 10 В. 

0.7 - это значение падения напряжения на диоде, включенном в прямом направлении. Стандартное значение, используемое в инженерных расчетах.

   Помимо номинального напряжения стабилизации также важны такие параметры стабилитрона как номинальный и максимальный токи стабилизации, максимальный постоянный прямой ток, максимальный импульсный ток и рассеиваемая мощность. 

   Для данной схемы я выбрал стабилитрон 1N4740А, который имеет следующие характеристики:

- номинальное напряжение стабилизации 10 В,
- номинальный ток стабилизации 25 мА,
- максимальный ток стабилизации 91 мА,
- максимальный импульсный ток 454 мА,
- максимальный ток в прямом направлении 200 мА,
- рассеиваемая мощность 500 мВт.

   В положительный полупериод сетевого напряжения через стабилитрон может протекать ток в диапазоне от 0 до 62 мА (Im). Если нагрузка будет потреблять меньший ток, стабилитрон будет брать часть тока на себя, если нагрузка отключится, весь входной ток будет протекать через стабилитрон. Поэтому максимальный ток стабилизации стабилитрона должен быть больше амплитудного значения входного тока. В нашем случае > 62 мА. У стабилитрона 1N4740 максимальный ток стабилизации 91 мА, значит, по этому параметру он подходит. 

   В отрицательный полупериод стабилитрон будет работать как обычный диод, и через него будет протекать весь входной ток источника питания. Нагрузка в этот момент запитывается от конденсатора C2. В прямом направлении стабилитрон выдерживает 200 мА, это больше амплитудного значения входного тока (62 мА), значит, по этому параметру он тоже подходит.

   Рассчитаем максимальную мощность, которая будет рассеиваться на стабилитроне. В положительный полупериод сетевого напряжения на стабилитроне будет 10 В, в отрицательный полупериод Ud = 1.2 В (значение из даташита для тока 200 мА). Для расчета возьмем среднее значение переменного тока за полпериода. Оно рассчитывается по формуле:

Iav = (2 * Im)/3.14 = 0.637*Im

где Im - амплитудное значение переменного тока, А.

  Максимальная мощность рассеиваемая на стабилитроне будет равна:

P = (0.637 * Im)*Ust + (0.637 * Im)*Ud = (0.637 * Im)*(Ust + Ud)
P = 0.637*62*(10 + 1.2) = 442 мВт

   Такая мощность будет рассеиваться на стабилитроне в худшем случае - когда через него будет идти весь ток нагрузки. На практике значение мощности будет меньше, так как в положительный полупериод через стабилитрон будет протекать меньший ток. По этому параметру стабилитрон тоже проходит.

6. Выбираем диод VD2

Ток нагрузки Iam = 20 мА.
Максимальное обратное напряжение на диоде приблизительно равно номинальному напряжению стабилитрона VD1, то есть 10 В.
Мощность, рассеиваемая на диоде, равна P = Ud*Iam = 0.7 * 20 = 14 мВт.
Берем по каждому из этих значений двойной запас и выбираем диод. Я выбрал диод 1N4148. 

7. Рассчитываем резистор R2

   Сетевое напряжение бытовой электросети составляет 220 В. Эта так называемое действующее значение. Действующее значение в корень из 2 раз меньше амплитудного значения. Я уже говорил об этом выше.
Амплитудное значение сетевого напряжения составляет:

Um = 220 * 1.41 = 311 В

   В начальный момент включения схемы, когда конденсатор C1 разряжен, может происходить бросок тока. Нужно подобрать такой номинал резистора R2, чтобы при максимальном входном напряжении импульсный ток через стабилитрон был меньше 454 мА.

R2 > Um/Ispike = 311/450 = 691 Ом

Выбираем ближайшее значение из ряда E24 - 750 Ом

Мощность рассеиваемая на этом резисторе будет равна

Pr = Iac * Iac * R = 44 * 44 * 750 Ом = 1.5 Вт

Берем 2 ваттный резистор.

 

8. Рассчитываем и выбираем конденсатор С1

   Номинал конденсатора С1 рассчитывается по следующей формуле:

формула расчета номинала гасящего конденсатора

где Iac – действующее значение тока в цепи, А; Uac – минимальное действующее значение напряжения в цепи, В; f – частота переменного напряжения, Гц; R – сопротивление резистора R2, Ом.

   Формула выведена из закона Ома для цепи переменного тока, состоящей из конденсатора и резистора.

   Все величины известны:

Iac = 44 мА
Uac = 220 В
R2 = 750 Ом
f = 50 Гц

   Подставляем их формулу и получаем значение C1. Оно будет равно 650 нФ. Возьмем большее соседнее значение из ряда Е12 - 680 нФ.

   Рабочее напряжение С1 должно быть больше чем Um = 311 В. Можно взять конденсатор с рабочим напряжением 400 В, но лучше взять конденсатор рассчитанный на 600 В.

   В качестве C1 нужно выбирать конденсаторы, предназначенные для работы в цепях переменного тока, например отечественные металлопленочные конденсаторы К73-17 или их импортные аналоги. Если не удается подобрать конденсатор нужное емкости, можно соединить два конденсатора меньшей емкости параллельно.

9. Выбираем резистор R2

   Резистор R1 выбираем номиналом 1.5-2 МОм. Мощность, которая будет рассеиваться на этом резисторе, можно грубо оценить по формуле:

P = (Uac*Uac)/R1 = (220*220)/1500000 = 32 мВт

Выбираем резистор мощностью 0.125 -  0.25 Вт.

Конечный вариант схемы

Конденсаторный источник питания. Окончательная схема


Разъем Х1 для подключения устройства к сети. 
Разъем Х3 для подачи постоянного напряжения при отладке и программировании устройства.

Несколько слов о правилах безопасности

   Ну и напоследок о самом главном.
   Не подключайте устройство с бестрансформаторным источником питания к компьютеру или программатору, когда оно запитано от сети. Что-то из них может сгореть.
   Для программирования или отладки устройства запитывайте его от отдельного источника постоянного напряжения, когда оно отключено от сети.
   Не дотрагивайтесь до элементов и проводников устройства, когда оно подключено к сети, это может привести к поражению электрическим током.
   Не подключайтесь к работающему устройству осциллографом.

У вас недостаточно прав для комментирования.