Для измерения аналоговых величин в цифровых системах используются аналогово-цифровые преобразователи (АЦП). АЦП характеризуются такими параметрами как диапазон входных напряжений и разрядность. Конечно, это не единственные его параметры, но сейчас нас интересуют именно они. 
   Диапазон входных напряжений зависит от опорного напряжения АЦП и определяет границы, в пределах которых аналоговый сигнал может быть оцифрован. Разрядность АЦП определяет шаг, с которым выполняется преобразование одной выборки аналогового сигнала. 
   Довольно часто возникает ситуация, когда диапазон входного измеряемого напряжения, не соответствует входному диапазону АЦП. Если он больше, АЦП не сможет измерить его значения за пределами своей шкалы, если меньше, то АЦП по сути будет работать в узком диапазоне и разрешение измеряемого напряжения будет низким. 
   Чтобы избежать этой ситуации применяются масштабирующие схемы, которые "подгоняют" интересующий нас диапазон входных напряжений под диапазон АЦП.

   Поиск в Интернете устройства, которое соответствует заголовку данной статьи, оказался безрезультатным. На Форумах считают, что такое устройство нельзя создать. Однако, в настоящее время изготовлен и испытан макет 16- разрядного АЦП на микроконтроллере (МК) ATmega 16, который входит в состав комерческого продукта.

   Когда АЦП делает выборки сигнала, он кодирует его дискретными шагами. Это вносит некоторую ошибку, известную как ошибка квантования. Использование нормального усреднения будет только сглаживать флуктуации сигнала, тогда как метод оверсемплинга и децимации будет увеличивать разрешение. Суть метода заключается в дискретизации сигнала с более высокой частотой и вычислении новой выборки сигнала на основе полученных дополнительных выборок. Требуемая частота дискретизации может быть найдена по формуле 3-1. Сложение дополнительных выборок и сдвиг результата вправо на n, будет давать результат с разрешением, увеличенным на n разрядов.