Компактные электрические вентиляторы, благодаря невысокой цене, используются для охлаждения оборудования уже больше полувека. Тем не менее только в последние годы технологии управления вентиляторами стали значительно развиваться. В этой статье описано как и почему это развитие имело место быть и предложены некоторые полезные решения для разработчиков. 

   В этом посте мы поговорим о простом методе расчета электрических цепей, известном как метод наложения или суперпозиции. Его можно применять для анализа электрических схем с несколькими источниками напряжения. Новичку может показаться, что он не использует такие схемы, но это не совсем так. 
   При анализе электрических схем используются эквивалентные схемы. Это некий упрощенный вариант исходной схемы, в которой ее некоторые части заменены. Так вот в этих эквивалентных схемах обычно и появляются дополнительные источники напряжения. 

   Интересная схема генерации синусоидального сигнала предложена в одном из старых выпусков журнала EDN. Идея основана на использовании цифрового сдвигового регистра и нескольких резисторов с фиксированными номиналами. Схема показана на рисунке ниже.

   Это схема простого аудио усилителя на основе операционного усилителя LM833. Она относится к разряду тех схем, которые можно собрать за час "на коленке". Однако, несмотря на свою простоту, схема вполне работоспособна и при должном качестве сборки может найти применение в качестве усилителя для наушников и предусилителя электрогитары. Или, на худой конец, вашего первого собранного устройства.

аудио усилитель на LM833

   Для измерения аналоговых величин в цифровых системах используются аналогово-цифровые преобразователи (АЦП). АЦП характеризуются такими параметрами как диапазон входных напряжений и разрядность. Конечно, это не единственные его параметры, но сейчас нас интересуют именно они. 
   Диапазон входных напряжений зависит от опорного напряжения АЦП и определяет границы, в пределах которых аналоговый сигнал может быть оцифрован. Разрядность АЦП определяет шаг, с которым выполняется преобразование одной выборки аналогового сигнала. 
   Довольно часто возникает ситуация, когда диапазон входного измеряемого напряжения, не соответствует входному диапазону АЦП. Если он больше, АЦП не сможет измерить его значения за пределами своей шкалы, если меньше, то АЦП по сути будет работать в узком диапазоне и разрешение измеряемого напряжения будет низким. 
   Чтобы избежать этой ситуации применяются масштабирующие схемы, которые "подгоняют" интересующий нас диапазон входных напряжений под диапазон АЦП.

   Для грамотного использования микроконтроллера необходимо иметь представление об электрических характеристиках его выводов. Эти характеристики определяют максимально допустимый втекающий/вытекающий ток и уровни входных/выходных напряжений. От них зависит что и как можно подключать к микроконтроллеру, и к чему это приведет. 
   Сегодняшний материал посвящен как раз этой теме. Данные, приведенные ниже, взяты из описания на микроконтроллер Atmega16 в разделах Electrical Characteristics и Typical Characteristics. Для более детального изучения этого вопроса, рекомендую обязательно их посмотреть.

   Итак, давай разберем последовательность расчета бестрансформаторного источника питания, рассмотренного в предыдущей статье. Описанная метода не претендует на истину в последней инстанции и может отличаться от других источников. Дополнительную информацию по такой схеме можно почерпнуть на зарубежных ресурсах, погуглив в сети запрос "capacitor power supply".

бестрансформаторный источник питания

   Устройства на микроконтроллерах требуют для своей работы постоянного стабилизированного напряжения величиной 3.3 - 5 Вольт. Как правило, такое напряжение получают из переменного сетевого напряжения с помощью трансформаторного источника питания. Данный источник питания (при соответствующем выборе компонентов) позволяет получать большие токи и имеет гальваническую развязку от сети переменного тока, что немаловажно для безопасной работы с устройством. Однако он имеет большие габариты, благодаря трансформатору и фильтрующим конденсаторам. 
   В некоторых устройствах на микроконтроллерах гальванической развязки от сети не требуется. Например, если устройство представляет собой герметичный блок, с которым конечный пользователь никак не контактирует. В этом случае, если схема потребляет относительно невысокий ток (десятки миллиампер), ее можно запитать от сети 220 В с помощью бестрансформаторного источника питания.
   В этой статье мы рассмотрим принцип работы такого источника питания, последовательность его расчета и практический пример использования.

схема бестрансформаторного источника питания

  При разработке электронных устройств иногда бывает ситуация, когда выводов микроконтроллера не хватает, а использовать другой чип нет возможности. В таких случаях обычно прибегают к схемотехническим трюкам или используют дополнительные внешние микросхемы, например, расширители портов, сдвиговые регистры или мультиплексоры.
   Расширители портов позволяют добавить микроконтроллеру “полноценные”  выводы, работающие как на выход, так и на вход, и, как правило, управляются с помощью стандартных интерфейсов - SPI  или I2C. Это очень удобно, но подобные микросхемы не из дешевых. 
   Бюджетный вариант – использование сдвиговых регистров и мультиплексоров, однако в этом случае полученные дополнительные выводы будут работать только на выход или на вход (исключение составляют универсальные сдвиговые регистры). Впрочем, в большинстве приложений этого вполне достаточно.  
   В этой статье мы рассмотрим расширение портов микроконтроллера с помощью сдвигового регистра 74HC595.  Им можно управлять как стандартными выводами  микроконтроллера, так и с помощью SPI модуля. Также его можно каскадировать, соединяя несколько микросхем в один большой регистр. 
   Чтобы пример был наглядным, с помощью регистров 74HC595 к микроконтроллеру будет подключен семисегментный индикатор. 


 

   Простая схема триггера Шмитта на операционом усилителе имеет симметричные пороговые напряжения относительно нулевой точки и требует для своей работы двуполярное питание. Симметричные пороги ограничивают возможности применения схемы, а двуполярное питание подразумевает использование соответствующего источника, что неудобно, если схема триггера используется совместно с микроконтроллером, напряжение питания которого обычно 5 или 3,3 Вольта. 
   Существует еще одна схема триггера Шмитта на операционном усилителе, в которой используется однополярное питание и можно задавать отличающиеся друг от друга пороговые напряжения. О расчете такой схемы и пойдет речь в этой статье. 

Страница 1 из 2