

AVR318: Dallas 1-Wire® master

Features
• Supports standard speed Dallas 1-Wire® protocol.
• Compatible with all AVRs.
• Polled or interrupt-driven implementation.
• Polled implementation requires no external hardware.

Introduction
Dallas 1-Wire® devices are unique in that only one wire in addition to ground is
needed to communicate with a device. Power supply and communications are
handled through only one connection. To communicate with a Dallas 1-Wire
device, only one general purpose I/O pin is needed. This application note shows
how a 1-Wire master can be implemented on an AVR, either in software only, or
utilizing the U(S)ART module.

8-bit
Microcontrollers

Application Note

Rev. 2579A-AVR-09/04

2 AVR318
2579A-AVR-09/04

Theory of operation - The Dallas 1-Wire® protocol
A 1-Wire bus uses only one wire for signaling and power. Communication is
asynchronous and half-duplex, and it follows a strict master-slave scheme. One or
several slave devices can be connected to the bus at the same time. Only one master
should be connected to the bus.

The bus is idle high, so there must be a pull-up resistor present. To determine the
value of the pull-up resistor, see the data sheet of the slave device(s). All devices
connected to the bus must be able to drive the bus low. A open-collector or open-
drain buffer is required if a device is connected through a pin that can not be put in a
tri-state mode.

Signaling on the 1-Wire bus is divided into time slots of 60us. One data bit is
transmitted on the bus per time slot. Slave devices are allowed to have a time base
that differs significantly from the nominal time base. This however, requires the timing
of the master to be very precise, to ensure correct communication with slaves with
different time bases. It is therefore very important to obey the time limits described in
the following sections.

The master initiates every communication on the bus down to the bit-level. This
means that for every bit that is to be transmitted, regardless of direction, the master
has to initiate the bit transmission. This is always done by pulling the bus low, which
will synchronize the timing logic of all units. There are 5 basic commands for
communication on the 1-Wire bus: “Write 1”, “Write 0”, “Read”, “Reset” and
“Presence”.

A “Write 1” signal is shown in Figure 1. The master pulls the bus low for 1 to 15 µs. It
then releases the bus for the rest of the time slot.

Figure 1. "Write 1" signal

A “Write 0” signal is shown in Figure 2. The master pulls the bus low for a period of at
least 60 µs, with a maximum length of 120 µs.

Figure 2. "Write 0" signal

A “Read” signal is shown in Figure 3. The master pulls the bus low for 1 to 15 µs. The
slave then holds the bus low if it wants to send a ‘0’. If it wants to send a ‘1’, it simply
releases the line. The bus should be sampled 15µs after the bus was pulled low. As
seen from the master’s side, the “Read” signal is in essence a “Write 1” signal. It is
the internal state of the slave, rather than the signal itself that dictates whether it is a
“Write 1” or “Read” signal.

Basic bus signals

“Write 1” signal

“Write 0” signal

“Read” signal

 AVR318

 3

2579A-AVR-09/04

Figure 3 - "Read" signal

A “Reset” and “Presence” signal is shown in Figure 4. Note that the time scale is
different from the first waveforms. The master pulls the bus low for at least 8 time
slots, or 480µs and then releases it. This long low period is called the “Reset” signal.
If there is a slave present, it should then pull the bus low within 60µs after it was
released by the master and hold it low for at least 60µs. This response is called a
“Presence” signal. If no presence signal is issued on the bus, the master must
assume that no device is present on the bus, and further communication is not
possible.

Figure 4. "Reset" and "Presence" signal

PresenceReset

Generating the 1-Wire signals on an AVR in software only is straightforward. Simply
changing the direction and value of a general purpose I/O pin and generating the
required delay is sufficient. A detailed description is given in the Implementation
section.

The basic 1-Wire signals can also be generated by a UART. This requires both the
TXD and RXD pins to be connected to the bus. An external open-collector or open-
drain buffer is required to allow slave devices to pull the bus low when the UART
output is high. Figure 5 shows the connection using NPN-transistors. The resistor
values are suggested values only. See the data sheet of the slave device for more
information on the recommended pull-up resistance.

Figure 5. Open collector buffer.

BC 54
7

10K

100K 4.7K

TXD

Bus

RXD

Vcc

BC 54
7

“Reset/Presence” signal

Generating the signals in
software

Generating the signals with a
UART

4 AVR318
2579A-AVR-09/04

The UART data format used when generating 1-Wire signals is 8 data bits, no parity
and 1 stop byte. One UART data frame is used to generate the waveform for one bit
or one RESET/PRESENCE sequence. Table 1 shows how to set up the UART
module to generate the waveforms and how to interpret the received data. The
corresponding UART bit patterns are shown in Figure 6 to Figure 10.

Table 1. UART signaling
Signal Baud Rate Transmit value Receive value

Write 1 115200 FFh FFh

Write 0 115200 00h 00h

Read 115200 FFh FFh equals a ‘1’ bit
Anything else equals a ‘0’ bit

Reset/Presence 9600 F0h F0h equals no presence.
Anything else equals presence.

Figure 6. "Write 1" signal and UART bit pattern.

STOPSTART 0 1 2 3 4 5 6 7

Waveform

UART bit pattern

Figure 7. "Write 0" signal and UART bit pattern.

STOPSTART 0 1 2 3 4 5 6 7

Waveform

UART bit pattern

 AVR318

 5

2579A-AVR-09/04

Figure 8. "Read 0" signal and UART bit pattern.

STOPSTART 0 1 2 3 4 5 6 7

Waveform

UART bit pattern

Figure 9. "Read 1" signal and UART bit pattern.

STOPSTART 0 1 2 3 4 5 6 7

Waveform

UART bit pattern

Figure 10. Reset/Presence signal with the UART

STOPSTART 0 1 2 3 4 5 6 7

RESET PRESENCE

Waveform

UART bit pattern

Every 1-Wire device contains a globally unique 64 bit identifier number stored in
ROM. This number can be used to facilitate addressing or identification of individual
devices on the bus. The identifier consists of three parts: an 8 bit family code, a 48 bit
serial number and an 8 bit CRC computed from the first 56 bits. A small set of
commands that operate on the 64 bit identifier are defined. These are called ROM
function commands. Table 2 lists the six defined ROM commands.

ROM function
commands

6 AVR318
2579A-AVR-09/04

Table 2. ROM commands
Command Code Usage

READ ROM 33H Identification

SKIP ROM CCH Skip addressing

MATCH ROM 55H Address specific device

SEARCH ROM F0H Obtain IDs of all devices on the bus

OVERDRIVE SKIP ROM 3CH Overdrive version of SKIP ROM

OVERDRIVE MATCH ROM 69H Overdriver version of MATCH ROM

The “READ ROM” command can be used on a bus with a single slave to read the 64
bit unique identifier. If there are several slave devices connected to the bus, the result
of this command will be the AND result of all slave device identifiers. Assumed that
communication is flawless, the presence of several slaves is indicated by a failed
CRC.

The “SKIP ROM” command can be used when no specific slave is targeted. On a
one-slave bus, the “SKIP ROM” command is sufficient for addressing. On a multiple-
slave bus, the “SKIP ROM” command can be used to address all devices at once.
This is only useful when sending commands to slave devices, e.g. to start
temperature conversions on several temperature sensors at once. It is not possible to
use the “SKIP ROM” command when reading from slave devices on a multiple-slave
bus.

The “MATCH ROM” command is used to address individual slave devices on the bus.
After the “MATCH ROM” command, the complete 64 bit identifier is transmitted on the
bus When this is done, only the device with exactly this identifier is allowed to answer
until the next reset pulse is received.

The “SEARCH ROM” command can be used when the identifiers of all slave devices
are not known in advance. It makes it possible to discover the identifiers of all slaves
present on the bus. First the “SEARCH ROM” command is transmitted on the bus.
The master then reads one bit from the bus. Each slave places the first bit of its
identifier on the bus. The master will read this as the logical AND result of the first bit
of all slave identifiers. The master then reads one more bit from the bus. Each slave
then places the complement of the first bit of its identifier on the bus. The master will
read this as the logical AND of the complement of the first bit of the identifier of all
slaves. If all devices have 1 as the first bit, the master will have read 10b. Similarly if
all devices have 0 as the first bit, the master will have read 01b. In these cases, the
bit can be stored as the first bit of all addresses. The master will then write back this
bit, which in effect will tell all slaves to keep sending identifier bits. If there are devices
with both 0 and 1 as the first bit in the identifier on the bus, the master will have read
00. In this case the master must make a choice, whether to continue with the
addresses that have 0 in this position or 1. The choice is transmitted on the bus, in
effect making all slaves that do not have this bit in this position of the identifier enter
an idle state.

The master then goes on to read the next bit, and the process is repeated until all 64
bits are read. The master should then have discovered one complete 64 bit identifier.
To discover more identifiers the “SEARCH ROM” command should be run again, but
this time a different choice for the bit value should be made the first time there is a
discrepancy. Repeating this once for each slave device should discover all slaves.
Note that when one search has been performed, all slaves except of one should have

READ ROM command

SKIP ROM command

MATCH ROM command

SEARCH ROM command

 AVR318

 7

2579A-AVR-09/04

entered an idle state. It is now possible to communicate with the active slave without
specifically addressing it with the MATCH ROM command.

The overdrive ROM commands are not covered here, since overdrive mode is outside
the scope of this document, only covering standard speed.

Memory/function commands are commands that are specific to one device, or a class
of devices. These commands typically deal with reading and writing of internal
memory and registers in slave devices. A number of memory/function commands are
defined, but all commands are not used by all devices. The order of writes and reads
is specific to each device, not part of the general specification. Memory commands
will therefore not be covered in detail here.

All 1-Wire devices follow a basic communication sequence:

1. The master sends the “Reset” pulse.

2. The slave(s) respond with a ”Presence” pulse.

3. The master sends a ROM command. This effectively addresses one or
several slave devices.

4. The master sends a Memory command.

Note that to reach each step, the last step has to be completed. It is however not
necessary to complete the whole sequence. E.g. it is possible to send a new “Reset”
after finishing a ROM command to start a new communication.

Cyclic Redundancy Check (CRC) is used by 1-Wire devices to ensure data integrity.
The theory behind CRC is outside the scope of this document and will not be further
discussed. See reference 2 for more information on CRC.

Two different CRC’s are commonly found in 1-Wire devices. One 8 bit CRC (Dallas
One Wire CRC, DOW-CRC, or simply CRC8) and one 16 bit CRC (CRC16). CRC8 is
used in the ROM section of all devices. CRC8 is also in some devices used to verify
other data, like commands issued on the bus. CRC16 is used by some devices to
check for errors on larger data sets.

The hardware equivalent of the 8 bit CRC used on the 64 bit identifier is shown in
Figure 11. The blocks represent the individual bits in a 8 bit shift register. The
equivalent CRC polynomial is X8 + X5 + X4 + 1.

Figure 11. Hardware equivalent of 8 bit CRC used in 1-Wire devices

X0 X1 X2 X3 X4 X5 X6 X7

Input
X8

The hardware equivalent of the 16 bit CRC used in some 1-Wire devices is shown in
Figure 12. The blocks represent the individual bits in a 16 bit shift register. The
equivalent polynomial is X16 + X15 + X2 + 1.

Overdrive ROM commands

Memory/function
commands

Putting it all together

Cyclic Redundancy
Check

8 AVR318
2579A-AVR-09/04

Figure 12. Hardware equivalent of 16 bit CRC used in 1-Wire devices

Input

X0 X1 X2 X3 X4 X5 X6 X7

X8 X9 X10 X11 X12 X13 X14 X15 X16

Implementation
Three different 1-Wire implementations are discussed here: software only (polled),
polled UART and interrupt-driven UART. A short description of each is given below.
Detailed information about the usage of the drivers is not included in this document.
Please see the documentation included with the source code for this application note
for details on how to use the different drivers.

It is possible to implement the 1-Wire protocol in software only without using any
special hardware. This solution has the advantage that the only hardware it occupies
is one general purpose I/O pin (GPIO). Since all GPIO pins on the AVR are bi-
directional, and have selectable internal pull-up resistors, the AVR can control a 1-
Wire bus with no external support-circuitry. In case the internal pull-up resistor is not
suitable with the current configuration of slave devices, only one external resistor is
needed. On the downside this implementation relies on busy waiting during
“Reset/Presence” and bit signaling. To ensure correct timing on the 1-Wire bus,
interrupts must be disabled during transmission of bits. The allowed delay between
transmission of two bits (recovery time) has no upper limit, however, so it is safe to
handle interrupts after every bit transmission. This makes the worst-case interrupt
latency due to 1-Wire bus activity equal to execution time of the “Reset/Presence”
signal, less than 1 ms.

The polled UART driver uses the UART module found on many AVRs to generate the
necessary waveforms at the bit-level. The rest of the driver is equal to the software
only driver. The main advantage with this driver compared to the software only driver
is code size and the fact that interrupts do not need to be turned off during bit
signaling since the UART module handles the timing details independently. On the
downside it requires two GPIO pins and some external support circuitry.

The Interrupt-driven UART driver uses the UART to generate the waveforms in the
same way as the Polled UART driver. In addition it takes advantage of the interrupt
capabilities found in the UART module to automate sending or receiving of up to 255
bits of data.

The polled drivers are divided in two parts. The bit-level waveform generation, and
the higher level commands like transmission of bytes and implementation of ROM
commands. Only the bit-level procedures are different between the two versions, but
they are implemented with a common interface, allowing the higher level commands
to be used with either driver.

Polled drivers

 AVR318

 9

2579A-AVR-09/04

With the software only implementation provided with this application note, it is
possible to have several 1-Wire buses connected to one AVR. All buses must,
however, be connected to the same IO port, but which port is optional at compile-
time. This limits the number of buses to eight, but placement of buses within the port
is fully configurable. All pins not used for 1-Wire buses are unaffected. Since all 1-
Wire buses are connected to the same port, several operations can be performed on
one or more buses at the same time. This is accomplished through an argument
called pin or pins, that is passed to every function. This argument should contain a
bit-mask of the pins that should be used for this operation. It is for instance possible
to send the Reset signal to eight buses at the same time by passing 0xff as the pins
argument. The value returned from the same function will be a bit-mask of all buses
where one or more slave devices answered with a presence signal. This bit mask can
then be passed as the pins argument to a function issuing the SKIP ROM command,
and so on. All functions in this implementation supports pin selection. As a general
rule, all commands that write to the bus can address several buses at the same time.
Commands that read more than one bit from the bus in some way can only address
one bus.

The initialization procedure for the software only 1-Wire interface is really simple. It
consists only of setting the 1-Wire pins in input mode, and enable the internal pull-up,
resistor, if required, to put the bus in idle mode. Some devices will react to this rising
edge on the bus as the end of a Reset signal and reply with a Presence signal. To
ensure that this signal does not interfere with any communication, a delay equally
long to the Reset recovery time is inserted.

The bit-level functions are implemented according to application note AN126 from
Dallas Semiconductors. All timing parameters comply with the recommended values
in this application note. Ten different delays are needed. These are listed in Table 3.

Table 3. Bit transfer layer delays
Parameter Recommended delay (µs)

A 6

B 64

C 60

D 10

E 9

F 55

G 0

H 480

I 70

J 410

Note that the G delay is zero in standard mode.

Since the IO operations are implemented in C and not assembly language, compiler
optimizations and other factors could affect timing. It is recommended to observe the
waveforms generated by each bit-level function with an oscilloscope, and adjust
delays if needed.

Software only
implementation

Initialization

Bit-level functions

10 AVR318
2579A-AVR-09/04

The bit transfer layer functions are implemented as shown in Figure 13. Note that the
function “DetectPresence” both sends the “Reset” signal, and listens for the
“Presence signal”. Note that all Bit transfer layer functions can address several buses
at the same time.

Figure 13. Bit transfer layer functions.

WriteBit1 WriteBit0 ReadBit

Return Return

Return

DetectPresence

Return

Disable interrputs

Restore interrupts

Disable interrputs

Restore interrupts

Disable interrputs

Restore interrupts

Disable interrputs

Restore interrupts

Drive bus low

Delay A

Relase bus

Delay B

Drive bus low

Delay C

Release bus

Delay D

Drive bus low

Delay A

Release bus

Delay E

Read bus state

Delay F

Drive bus low

Delay H

Release bus

Delay I

Read bus state

Delay J

Two macros are included to drive the bus low and to release the bus. These are
implemented as macros because they occur frequently, and the overhead caused by
function calls is unwanted because of the strict timing requirements.

In this implementation, all the timing details are taken care of by the UART module.
To send a bit, the UART Baud Rate is set to the appropriate value, and the UART
data register is loaded with a value that will generate the desired waveform as
described in the “Generating the signals with a UART” section.

To initialize the 1-Wire interface for the polled UART driver, the UART module has to
be initialized with the right parameters. Enable transmission and reception, set data
format to 8 bits, no parity, 1 stop bit and set baud rate to 115.2kBaud.

This will cause the TXD pin to enter a UART idle state, which is a logic high. Slave
devices will interpret this rising edge as the end of a RESET signal, and answer with
a presence signal.

All bit-level functions in the Polled UART driver are implemented through one
common function called OWI_TouchBit. This function outputs the first input argument
to the UART module, waits until UART reception is complete, and then returns the

Polled UART implementation

Initialization

Bit-level functions

 AVR318

 11

2579A-AVR-09/04

received value. Each of the bit-level functions calls OWI_TouchBit with the value that
will generate the correct waveform on the bus.

The interface to these functions is the same as for the software only implementation.
The ‘pins’ argument is however not necessary in the polled UART driver. A set of
macros makes it possible to call these functions with or without the pins argument. If
the pins argument is included, it will be removed by the macros.

Note that many functions in this layer accept an argument of type unsigned char
pointer. This pointer should point to an array of 8 bytes of memory that can be used
by the function. Allocation, and sometimes initialization, of these arrays must be done
by the caller. This document clearly states when the memory has to be initialized in a
special way before calling a function.

Figure 14. Byte transmission functions

SendByte ReceiveByte

temp = data &
0x01

ReadBit

Result of
ReadBit

Right shift data

Set msb of data

0

1

Bits left?

Return data

Yes

No

Set data = 0

Value of temp

1

0

Right shift data

WriteBit1 WriteBit0

Bits left?

Yes

Return

No

All general ROM commands for standard speed communication are implemented.

The simplest ROM command is the SKIP ROM command. It simply calls the
SendByte function with the SKIP ROM command byte as argument.

Flowcharts for the READ ROM and MATCH ROM commands are shown in figure
Figure 15.

Higher level functions

Byte transmission functions

ROM commands

12 AVR318
2579A-AVR-09/04

Figure 15. Read ROM flowchart

ReadRom

SendByte(READ ROM
command)

Finished all 8
bytes?

ReceiveByte
No

Return

Yes

MatchRom

Send MATCH ROM
command

SendByte

Finished all 8
bytes?

No

Yes

Return

The flowchart for the SEARCH ROM command is shown in Figure 16. This function
will find one slave device for each time it is run, until there are no undiscovered slave
devices on the bus. The last time it is run, it will return
OWI_ROM_SEARCH_FINISHED. In addition to the the ‘pin’ parameter, used to
select which bus to perform the search on, two parameters must be passed to this
function: ‘lastDeviation’ and ‘bitPattern’. These parameters control the slave device
search. Refer to Table 4 to understand how to use these parameters to complete a
full search for all slave devices.

Table 4. bitPattern and lastDeviation usage
 BitPattern lastDeviation
First time Zero filled 8 byte array 0

Consecutive runs A copy of the 8 byte array
returned through bitPattern
pointer last run.

Value returned from
SearchRom last run.

The function is implemented in this way to give the caller maximum flexibility. The
example software for the polled driver shows how it can be used to implement the full
search.

 AVR318

 13

2579A-AVR-09/04

Figure 16. Search ROM command

SearchRom

Set bitIndex = 1

Send SEARCH
ROM command

Read bit twice

Both bits = 1?

Send
bitPattern[bitIndex]

Return
newDeviation

bit1 ‡ bit2

Error, set newDeviation to
ROM_SEARCH_FAILEDYes

Set
bitPattern[bitIndex]

to first bit read

No

No

Yes

bitIndex =
lastDeviation?

Set
bitPattern[bitIndex]

to 1
Yes

bitIndex >
lastDeviation?

No

Yes
Set

bitPattern[bitIndex]
to 0

Set newDeviation
to bitIndexbitPattern[bitIndex] = 0? Yes

No

Increment bitIndex

bitIndex > 64?

No

Yes

Set newDeviation
to 0

No

Error

All slaves have the
same bit at this position

There are
both 0's

and 1's at
this bit

position.
This is

where the
actual

search
takes
place.

14 AVR318
2579A-AVR-09/04

It is important to be able to generate the waveforms as precisely as possible. To do
this, precise delays are needed. The number of clock cycles needed to delay for a
certain number of microseconds is computed at compile time. When generating
waveforms, some clock cycles are lost when pulling the bus low and when releasing
the bus. These clock cycles are subtracted from the number of clock cycles needed to
generate the delay. If the clock frequency is too low, this could generate a negative
delay. A clock frequency higher than 2.17MHz is needed to be able to generate the
shortest delays.

The interrupt-driven UART driver has the same hardware requirement as the polled
UART driver.

The basic functionality of the interrupt-driven implementation presented in this
application note is to automate transmission and reception of larger chunks of data on
the bus. This is done in two Interrupt Service Routines (ISRs). A set of helper
functions can be called to set up all the necessary parameters, and these ISRs
completes the transaction automatically. It is possible to do a Reset/Presence
sequence or transfer anywhere between 1 and 255 bits of data in one direction
without intervention.

To make the ISRs as simple as possible, they do not differentiate between
transmission and reception. The UDRE ISR simply sends one bit from the data buffer
every time it is run. The RXC ISR receives the same bit, and puts it back into the data
buffer no matter which direction data was sent. During transmission, the data sent will
be identical to the data received, and the data buffer remains unchanged. During
reception, only ‘1’s should be transmitted, since the ‘write 1’ waveform is the same as
the read waveform. The signal is sampled to find the value written by the slave
device. This value is then placed in the data buffer.

Three global flags signal the state of the 1-Wire driver: busy, presence and error. The
busy flag is set as long as there is more data to transfer. The presence flag is set if a
Presence signal is detected when sending a Reset signal. This flag remains set until
a Reset signal on the bus does not return a Presence signal. The error flag is set
when the UART receiver detects a frame error. In this situation, a new Reset signal
should be transmitted on the bus. This will reset all slaves on the bus, as well as the
internal state of UDRE and RXC ISRs.

As ISRs should be executed as quickly as possible, more complex functions like
ROM commands are not implemented in the ISRs. The included example code shows
how such behavior could be implemented in a Finite State Machine (FSM).

Flowcharts for the ISRs are shown in Figure 17 and Figure 18. The UART Data
Register Empty (UDRE) ISR is run every time there is room for data in the UART
transmission buffer. The UART Receive Complete (RXC) ISR is run every time data
has been received and is ready in the UART reception buffer.

Timing considerations

Interrupt-driven UART
implementation

The interrupt service routines

 AVR318

 15

2579A-AVR-09/04

Figure 17. UDRE Interrupt Service Routine

UDRE ISR

Write '0' bit

lsb of Transmit
buffer = 1?

Write '1' bit

Yes

Right shift
Transmit buffer

Increase bits sent

bits sent =
bufferLength?

Return

Yes No

No

Set bits sent to 0

Stop further
transmission

Transmit buffer =
OWI data buffer[0]

No

Adjust byte index
and fetch new

byte to transmit
buffer

BAUD rate =
9600

No

Transmit Reset
signal

Set bits sent = 0

Yes

Stop further
transmission

Bits sent = 0? Yes

Full byte sent?

16 AVR318
2579A-AVR-09/04

Figure 18. RXC Interrupt Service Routine

UART RXC ISR

Baud Rate =
9600

Set/clear
presence flag

Yes

Set Baud Rate =
115200

Received a '1'
bit?

Set msb of receive
buffer

yes

No

Increase bits
received

bits received =
buffer lenght?

No

Return

Clear OWI busy
flag

Yes

Set bits received =
0

Clear OWI busy
flag

Right shift receive
buffer

OWI data
buffer[ibyte index]
= receive buffer

Frame error?

No

Yes

Read UART data
register

Flag error

Place receive
buffer in

dataBuffer

Bits received = 0

Adjust receive
buffer

Read UART data
register

No

Set byte index = 0

Clear OWI busy
flag

Stop further
transmission

Increase
byteIndex

Full byte
received

No

Yes

No need to explicitly set msb
to '0', since a '0' was just

shifted in.

The helper functions set up some parameters that are necessary for the automated
interrupt-driven transmission to succeed. After setting up all the necessary
parameters, transmission is initiated by enabling the UDRE interrupt.

Flowcharts for the helper functions are shown in Figure 19.

Helper functions

 AVR318

 17

2579A-AVR-09/04

Note that the ReceiveData function actually fills the data buffer with ‘1’s and calls the
TransmitData function. The RXC ISR will sample the signal and place the value read
from the slave device into the data buffer.

Figure 19. Helper functions

TransmitData

Set data buffer
pointer

Set OWI busy flag

DetectPresence

Baud rate = 9600

Set OWI busy flag

Return

Return

Start transmission

Set buffer length

ReceiveData

Return

TransmitData

Fill data with 1s

Start transmission

The algorithm used to compute the two different CRC’s are described below.

The crc is either set to 0, or to a CRC “seed”. This is explained below.

1. Find the logical exclusive or between the lsb of the CRC and the lsb of the
data.

2. If this value is 0:
a. Right shift CRC.

3. If the value was 1:
a. Find the new CRC value by taking the logical exclusive or of the CRC

and the CRC polynomial.
b. Right shift CRC.
c. Set the msb of the CRC to 1.

4. Right shift the data
5. Repeat the whole sequence 8 times.

This algorithm can be used to compute both CRC8 and CRC16. The only difference
is the width of the CRC shift register (8 bits for CRC8, 16 bits for CRC16) and the
value of the polynomial. This number will simulate the connection of the XOR gates in
hardware. The value of the polynomial is 18h for CRC8 and 4002h for CRC16.

The algorithms are implemented to find the CRC value of one byte at a time, but a
CRC “seed” can be passed as an argument to the CRC routines. In this way the
result of one CRC operation can be passed to the next one along with the next byte,
in effect computing the CRC of an arbitrary number of bytes.

CRC checking of 64 bit identifiers are implemented in OWI_CheckRomCRC. It simply
computes the CRC8 value of the first 56 bits, and compares it to the last 8 bits of the
identifier.

CRC computation

18 AVR318
2579A-AVR-09/04

Two code examples has been included that shows how to use the different
implementations of the 1-Wire driver.

The code example for the polled drivers will search the buses defined by “BUSES” for
devices. The devices are stored in an array of type OWI_device. OWI_device is a
struct containing information about what bus a device is connected to and its 64 bit
identifier. The driver then searches through the available slave devices for a DS1820
temperature sensor and a DS2890 digital potentiometer. If one or both of these
devices are found on the bus, these will be constantly negotiated in an eternal loop. In
each iteration, the temperature of the DS1820 is polled and the wiper position of the
DS2890 is increased in a modulo 256 fashion. The temperature is output to PORTB,
so it can be observed for instance on the LED’s of a STK500 development board.

This code example is intended to show how the different parts of the driver can be
used. The code is very general, and not optimized for the objective. Please note that
because of this, the code example will not fit on a device with less than 4kB of
program memory. The driver is, however, fully compatible with all AVRs, including
1KB devices.

In the interrupt-driven example, a finite state machine (FSM) is implemented. If the
driver is not busy transmitting data on the bus, this FSM is called from an eternal
loop. When the driver is busy, the FSM will be skipped to allow any other code to be
run. The FSM itself assumes that there is a sole DS1820 temperature sensor
available on the bus. It will read the current temperature, and compute the CRC to
make sure that it was read correctly. The temperature is then put in a global variable.
Whenever the driver is busy, the eternal loop outputs the temperature to PORTB, so it
can be observed for instance on the LED’s of a STK500 development board.

Getting started
This section outlines how to get started with the example code included with this
application note.

The source code can be downloaded as a zip-file from www.atmel.com. Unzip the
source code to a directory of your choice. Please make sure that the directory
structure within the zip-file is preserved. There are three subdirectories: “polled”,
“interrupt_driven” and “common_files”. “common_files” contains CRC functions,
common definitions and device specific defines, used for the UART drivers. “polled”
and “interrupt_driven” contains the drivers and code examples.

Each directory contains a file named “source.doc”. These files contain the
documentation of the source code. Please consult this documentation for details on
how to use the different drivers.

A short description of each file in the polled driver is shown in Table 5.

Code examples

Polled example

Interrupt-driven example

The source code

Polled driver

 AVR318

 19

2579A-AVR-09/04

Table 5. Polled driver files
File Contains

main.c Code example for the polled driver.

OWISWBitFunctions.c Implementation of the software only bit-level functions.

OWIUARTBitFunctions.c Implementation of the UART bit-level functions.

OWIBitFunctions.h Common header file for OWISWBitFunctions.c and
OWIUARTBitfunctions.c.

OWIHighLevelFunctions.c High level functions.

OWIHighLevelFunctions.h Header file for OWIHighLevelFunctions.c.

OWIPolled.h Configuration header file for the polled drivers.

source.doc Documentation of the source code in this folder.

To get started with the polled drivers, follow the steps below:

• Create a new project in IAR embedded workbench. Depending on the version, this
might require that a workspace is already created.

• Add all *.c files from the “polled” and “common_files” directories.
• Select the project from the project browser. Right click on the project and select

options to bring up the project options dialog.
• Under “General/Target”, make sure that the correct device and memory model is

selected.
• Under “General/Library configuration”, check the “Enable bit definitions in I/O

include files” option.
• Under “General/System”, set the Data stack (CSTACK) to 0x40 and the Return

stack (RSTACK) to 0x10. This is required to run the memory-intensive example
code. Smaller stack sizes may be sufficient for other application utilizing this driver.

• If AVRStudio is used for debugging, the output file format must be changed. Under
XLINK/Output, select Format/Other, and then select “ubrof 8 (forced)” from the
“Output format” drop-down box.

• Open the file “OWIPolled.h” for editing and locate the section named “User
defines”.

• Choose between software only or UART driver by uncommenting one of the lines
as described in the file.

• Move down to the section corresponding to the selected driver.
• Adjust the defines in the section according to the hardware setup as described in

the file.
• The project is now ready to be compiled.

A short description of each file in the interrupt-driven driver is shown in Table 6. Interrupt-driven driver

20 AVR318
2579A-AVR-09/04

Table 6. Interrupt-driven driver files
File Contains

main.c Code example for the interrupt-driven driver.

OWIInterruptDriven.h Configuration header file for the interrupt-driven driver.

OWIIntFunctions.c Implementation of the interrupt-handlers and helper functions.

OWIIntFunctions.h Header file for OWIIntFunctions.c.

source.doc Documentation of the source code in this folder.

To get started with the interrupt-driven driver, follow the steps below:

• Create a new project in IAR embedded workbench. Depending on the version, this
might require that a workspace is already created.

• Add all *.c files from the “polled” and “common_files” directories.
• Select the project from the project browser. Right click on the project and select

options to bring up the project options dialog.
• Under “General/Target”, make sure that the correct device and memory model is

selected.
• Under “General/Library configuration”, check the “Enable bit definitions in I/O

include files” option.
• If AVRStudio is used for debugging, the output file format must be changed. Under

XLINK/Output, select Format/Other, and then select “ubrof 8 (forced)” from the
“Output format” drop-down box.

• Open the file “OWIInterruptDriven.h” for editing and locate the section named “User
defines”.

• Change the defines in the “User defines” section to reflect the hardware setup.
• The project is now ready to be compiled.

1. Application note 126, 1-Wire communication through software, Dallas
Semiconductors, 2004.

2. Book of iButton standards, Dallas Semiconductors, 1997.
3. Application note 214, Using a UART to implement a 1-wire bus master, Dallas

Semiconductors, 2002.

References

2579A-AVR-09/04

Disclaimer

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters
Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations
Memory

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

 Literature Requests

www.atmel.com/literature

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard
warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for
any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice,
and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel
are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for
use as critical components in life support devices or systems.

© Atmel Corporation 2004. All rights reserved. Atmel® and combinations thereof, AVR® , and AVR Studio® are the registered
trademarks of Atmel Corporation or its subsidiaries. Microsoft® , Windows® , Windows NT® , and Windows XP® are the registered trademarks
of Microsoft Corporation. 1-Wire® is a registered trademark of Dallas Semiconductor
 Other terms and product names may be the trademarks of others

	AVR318: Dallas 1-Wire® master
	Features
	Introduction
	Theory of operation - The Dallas 1-Wire® protoco�
	Basic bus signals
	“Write 1” signal
	“Write 0” signal
	“Read” signal
	“Reset/Presence” signal
	Generating the signals in software
	Generating the signals with a UART

	ROM function commands
	READ ROM command
	SKIP ROM command
	MATCH ROM command
	SEARCH ROM command
	Overdrive ROM commands

	Memory/function commands
	Putting it all together
	Cyclic Redundancy Check

	Implementation
	Polled drivers
	Software only implementation
	Initialization
	Bit-level functions

	Polled UART implementation
	Initialization
	Bit-level functions

	Higher level functions
	Byte transmission functions
	ROM commands

	Timing considerations
	Interrupt-driven UART implementation
	The interrupt service routines
	Helper functions

	CRC computation
	Code examples
	Polled example
	Interrupt-driven example

	Getting started
	The source code
	Polled driver
	Interrupt-driven driver

	References
	Disclaimer

