
  

 
 

AVR318: Dallas 1-Wire® master 

Features 
• Supports standard speed Dallas 1-Wire® protocol. 
• Compatible with all AVRs. 
• Polled or interrupt-driven implementation. 
• Polled implementation requires no external hardware. 

Introduction 
Dallas 1-Wire® devices are unique in that only one wire in addition to ground is 
needed to communicate with a device. Power supply and communications are 
handled through only one connection. To communicate with a Dallas 1-Wire 
device, only one general purpose I/O pin is needed. This application note shows 
how a 1-Wire master can be implemented on an AVR, either in software only, or 
utilizing the U(S)ART module. 
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Theory of operation - The Dallas 1-Wire® protocol 
A 1-Wire bus uses only one wire for signaling and power. Communication is 
asynchronous and half-duplex, and it follows a strict master-slave scheme. One or 
several slave devices can be connected to the bus at the same time. Only one master 
should be connected to the bus. 

The bus is idle high, so there must be a pull-up resistor present. To determine the 
value of the pull-up resistor, see the data sheet of the slave device(s). All devices 
connected to the bus must be able to drive the bus low. A open-collector or open-
drain buffer is required if a device is connected through a pin that can not be put in a 
tri-state mode. 

Signaling on the 1-Wire bus is divided into time slots of 60us. One data bit is 
transmitted on the bus per time slot. Slave devices are allowed to have a time base 
that differs significantly from the nominal time base. This however, requires the timing 
of the master to be very precise, to ensure correct communication with slaves with 
different time bases. It is therefore very important to obey the time limits described in 
the following sections. 

The master initiates every communication on the bus down to the bit-level. This 
means that for every bit that is to be transmitted, regardless of direction, the master 
has to initiate the bit transmission. This is always done by pulling the bus low, which 
will synchronize the timing logic of all units. There are 5 basic commands for 
communication on the 1-Wire bus: “Write 1”, “Write 0”, “Read”, “Reset” and 
“Presence”.  

A “Write 1” signal is shown in Figure 1. The master pulls the bus low for 1 to 15 µs. It 
then releases the bus for the rest of the time slot. 

 

Figure 1. "Write 1" signal 

 
 
A “Write 0” signal is shown in Figure 2. The master pulls the bus low for a period of at 
least 60 µs, with a maximum length of 120 µs. 

 

Figure 2. "Write 0" signal 

 
 
A “Read” signal is shown in Figure 3. The master pulls the bus low for 1 to 15 µs. The 
slave then holds the bus low if it wants to send a ‘0’. If it wants to send a ‘1’, it simply 
releases the line. The bus should be sampled 15µs after the bus was pulled low. As 
seen from the master’s side, the “Read” signal is in essence a “Write 1” signal. It is 
the internal state of the slave, rather than the signal itself that dictates whether it is a 
“Write 1” or “Read” signal. 

 

Basic bus signals 

“Write 1” signal 

“Write 0” signal 

“Read” signal 
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Figure 3 - "Read" signal 

 
 

A “Reset” and “Presence” signal is shown in Figure 4. Note that the time scale is 
different from the first waveforms. The master pulls the bus low for at least 8 time 
slots, or 480µs and then releases it. This long low period is called the “Reset” signal. 
If there is a slave present, it should then pull the bus low within 60µs after it was 
released by the master and hold it low for at least 60µs. This response is called a 
“Presence” signal. If no presence signal is issued on the bus, the master must 
assume that no device is present on the bus, and further communication is not 
possible. 

Figure 4. "Reset" and "Presence" signal 

PresenceReset

 
Generating the 1-Wire signals on an AVR in software only is straightforward. Simply 
changing the direction and value of a general purpose I/O pin and generating the 
required delay is sufficient. A detailed description is given in the Implementation 
section.  

The basic 1-Wire signals can also be generated by a UART. This requires both the 
TXD and RXD pins to be connected to the bus. An external open-collector or open-
drain buffer is required to allow slave devices to pull the bus low when the UART 
output is high. Figure 5 shows the connection using NPN-transistors. The resistor 
values are suggested values only. See the data sheet of the slave device for more 
information on the recommended pull-up resistance. 

Figure 5. Open collector buffer. 
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The UART data format used when generating 1-Wire signals is 8 data bits, no parity 
and 1 stop byte. One UART data frame is used to generate the waveform for one bit 
or one RESET/PRESENCE sequence. Table 1 shows how to set up the UART 
module to generate the waveforms and how to interpret the received data. The 
corresponding UART bit patterns are shown in Figure 6 to Figure 10. 

Table 1. UART signaling 
Signal Baud Rate Transmit value Receive value 

Write 1 115200 FFh FFh 

Write 0 115200 00h 00h 

Read 115200 FFh FFh equals a ‘1’ bit 
Anything else equals a ‘0’ bit 

Reset/Presence 9600 F0h F0h equals no presence. 
Anything else equals presence. 

 

Figure 6. "Write 1" signal and UART bit pattern. 
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Waveform

UART bit pattern  
 

Figure 7. "Write 0" signal and UART bit pattern. 
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Figure 8. "Read 0" signal and UART bit pattern. 

STOPSTART 0 1 2 3 4 5 6 7

Waveform

UART bit pattern
 

 
Figure 9. "Read 1" signal and UART bit pattern. 

STOPSTART 0 1 2 3 4 5 6 7

Waveform

UART bit pattern
 

 

Figure 10. Reset/Presence signal with the UART 

STOPSTART 0 1 2 3 4 5 6 7

RESET PRESENCE

Waveform

UART bit pattern  
 
Every 1-Wire device contains a globally unique 64 bit identifier number stored in 
ROM. This number can be used to facilitate addressing or identification of individual 
devices on the bus. The identifier consists of three parts: an 8 bit family code, a 48 bit 
serial number and an 8 bit CRC computed from the first 56 bits. A small set of 
commands that operate on the 64 bit identifier are defined. These are called ROM 
function commands. Table 2 lists the six defined ROM commands. 

 

 

ROM function 
commands 



 

6 AVR318 
2579A-AVR-09/04 

Table 2. ROM commands 
Command Code Usage 

READ ROM 33H Identification 

SKIP ROM CCH Skip addressing 

MATCH ROM 55H Address specific device 

SEARCH ROM F0H Obtain IDs of all devices on the bus 

OVERDRIVE SKIP ROM 3CH Overdrive version of SKIP ROM 

OVERDRIVE MATCH ROM 69H Overdriver version of MATCH ROM 
 

The “READ ROM” command can be used on a bus with a single slave to read the 64 
bit unique identifier. If there are several slave devices connected to the bus, the result 
of this command will be the AND result of all slave device identifiers. Assumed that 
communication is flawless, the presence of several slaves is indicated by a failed 
CRC. 

The “SKIP ROM” command can be used when no specific slave is targeted. On a 
one-slave bus, the “SKIP ROM” command is sufficient for addressing. On a multiple-
slave bus, the “SKIP ROM” command can be used to address all devices at once. 
This is only useful when sending commands to slave devices, e.g. to start 
temperature conversions on several temperature sensors at once. It is not possible to 
use the “SKIP ROM” command when reading from slave devices on a multiple-slave 
bus. 

The “MATCH ROM” command is used to address individual slave devices on the bus. 
After the “MATCH ROM” command, the complete 64 bit identifier is transmitted on the 
bus When this is done, only the device with exactly this identifier is allowed to answer 
until the next reset pulse is received. 

The “SEARCH ROM” command can be used when the identifiers of all slave devices 
are not known in advance. It makes it possible to discover the identifiers of all slaves 
present on the bus. First the “SEARCH ROM” command is transmitted on the bus. 
The master then reads one bit from the bus. Each slave places the first bit of its 
identifier on the bus. The master will read this as the logical AND result of the first bit 
of all slave identifiers. The master then reads one more bit from the bus. Each slave 
then places the complement of the first bit of its identifier on the bus. The master will 
read this as the logical AND of the complement of the first bit of the identifier of all 
slaves. If all devices have 1 as the first bit, the master will have read 10b. Similarly if 
all devices have 0 as the first bit, the master will have read 01b. In these cases, the 
bit can be stored as the first bit of all addresses. The master will then write back this 
bit, which in effect will tell all slaves to keep sending identifier bits. If there are devices 
with both 0 and 1 as the first bit in the identifier on the bus, the master will have read 
00. In this case the master must make a choice, whether to continue with the 
addresses that have 0 in this position or 1. The choice is transmitted on the bus, in 
effect making all slaves that do not have this bit in this position of the identifier enter 
an idle state.  

The master then goes on to read the next bit, and the process is repeated until all 64 
bits are read. The master should then have discovered one complete 64 bit identifier. 
To discover more identifiers the “SEARCH ROM” command should be run again, but 
this time a different choice for the bit value should be made the first time there is a 
discrepancy. Repeating this once for each slave device should discover all slaves. 
Note that when one search has been performed, all slaves except of one should have 

READ ROM command 

SKIP ROM command 

MATCH ROM command 

SEARCH ROM command 
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entered an idle state. It is now possible to communicate with the active slave without 
specifically addressing it with the MATCH ROM command.   

The overdrive ROM commands are not covered here, since overdrive mode is outside 
the scope of this document, only covering standard speed. 

Memory/function commands are commands that are specific to one device, or a class 
of devices. These commands typically deal with reading and writing of internal 
memory and registers in slave devices. A number of memory/function commands are 
defined, but all commands are not used by all devices. The order of writes and reads 
is specific to each device, not part of the general specification. Memory commands 
will therefore not be covered in detail here. 

All 1-Wire devices follow a basic communication sequence: 

1. The master sends the “Reset” pulse. 

2. The slave(s) respond with a ”Presence” pulse. 

3. The master sends a ROM command. This effectively addresses one or 
several slave devices. 

4. The master sends a Memory command. 

Note that to reach each step, the last step has to be completed. It is however not 
necessary to complete the whole sequence. E.g. it is possible to send a new “Reset” 
after finishing a ROM command to start a new communication. 

Cyclic Redundancy Check (CRC) is used by 1-Wire devices to ensure data integrity. 
The theory behind CRC is outside the scope of this document and will not be further 
discussed. See reference 2 for more information on CRC.  

Two different CRC’s are commonly found in 1-Wire devices. One 8 bit CRC (Dallas 
One Wire CRC, DOW-CRC, or simply CRC8) and one 16 bit CRC (CRC16). CRC8 is 
used in the ROM section of all devices. CRC8 is also in some devices used to verify 
other data, like commands issued on the bus. CRC16 is used by some devices to 
check for errors on larger data sets. 

The hardware equivalent of the 8 bit CRC used on the 64 bit identifier is shown in 
Figure 11. The blocks represent the individual bits in a 8 bit shift register. The 
equivalent CRC polynomial is X8 + X5 + X4  + 1. 

Figure 11. Hardware equivalent of 8 bit CRC used in 1-Wire devices 

X0 X1 X2 X3 X4 X5 X6 X7

Input
X8

 
The hardware equivalent of the 16 bit CRC used in some 1-Wire devices is shown in 
Figure 12. The blocks represent the individual bits in a 16 bit shift register. The 
equivalent polynomial is X16 + X15 + X2 + 1. 
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Figure 12. Hardware equivalent of 16 bit CRC used in 1-Wire devices 
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Implementation 
Three different 1-Wire implementations are discussed here: software only (polled), 
polled UART and interrupt-driven UART. A short description of each is given below. 
Detailed information about the usage of the drivers is not included in this document. 
Please see the documentation included with the source code for this application note 
for details on how to use the different drivers. 

It is possible to implement the 1-Wire protocol in software only without using any 
special hardware. This solution has the advantage that the only hardware it occupies 
is one general purpose I/O pin (GPIO). Since all GPIO pins on the AVR are bi-
directional, and have selectable internal pull-up resistors, the AVR can control a 1-
Wire bus with no external support-circuitry. In case the internal pull-up resistor is not 
suitable with the current configuration of slave devices, only one external resistor is 
needed. On the downside this implementation relies on busy waiting during 
“Reset/Presence” and bit signaling. To ensure correct timing on the 1-Wire bus, 
interrupts must be disabled during transmission of bits. The allowed delay between 
transmission of two bits (recovery time) has no upper limit, however, so it is safe to 
handle interrupts after every bit transmission. This makes the worst-case interrupt 
latency due to 1-Wire bus activity equal to execution time of the “Reset/Presence” 
signal, less than 1 ms. 

The polled UART driver uses the UART module found on many AVRs to generate the 
necessary waveforms at the bit-level. The rest of the driver is equal to the software 
only driver. The main advantage with this driver compared to the software only driver 
is code size and the fact that interrupts do not need to be turned off during bit 
signaling since the UART module handles the timing details independently. On the 
downside it requires two GPIO pins and some external support circuitry. 

The Interrupt-driven UART driver uses the UART to generate the waveforms in the 
same way as the Polled UART driver. In addition it takes advantage of the interrupt 
capabilities found in the UART module to automate sending or receiving of up to 255 
bits of data.  

The polled drivers are divided in two parts. The bit-level waveform generation, and 
the higher level commands like transmission of bytes and implementation of ROM 
commands. Only the bit-level procedures are different between the two versions, but 
they are implemented with a common interface, allowing the higher level commands 
to be used with either driver.  

Polled drivers 
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With the software only implementation provided with this application note, it is 
possible to have several 1-Wire buses connected to one AVR. All buses must, 
however, be connected to the same IO port, but which port is optional at compile-
time. This limits the number of buses to eight, but placement of buses within the port 
is fully configurable. All pins not used for 1-Wire buses are unaffected. Since all 1-
Wire buses are connected to the same port, several operations can be performed on 
one or more buses at the same time. This is accomplished through an argument 
called pin or pins, that is passed to every function. This argument should contain a 
bit-mask of the pins that should be used for this operation. It is for instance possible 
to send the Reset signal to eight buses at the same time by passing 0xff as the pins 
argument. The value returned from the same function will be a bit-mask of all buses 
where one or more slave devices answered with a presence signal. This bit mask can 
then be passed as the pins argument to a function issuing the SKIP ROM command, 
and so on. All functions in this implementation supports pin selection. As a general 
rule, all commands that write to the bus can address several buses at the same time. 
Commands that read more than one bit from the bus in some way can only address 
one bus. 

The initialization procedure for the software only 1-Wire interface is really simple. It 
consists only of setting the 1-Wire pins in input mode, and enable the internal pull-up, 
resistor, if required, to put the bus in idle mode. Some devices will react to this rising 
edge on the bus as the end of a Reset signal and reply with a Presence signal. To 
ensure that this signal does not interfere with any communication, a delay equally 
long to the Reset recovery time is inserted. 

The bit-level functions are implemented according to application note AN126 from 
Dallas Semiconductors. All timing parameters comply with the recommended values 
in this application note. Ten different delays are needed. These are listed in Table 3. 

Table 3. Bit transfer layer delays 
Parameter Recommended delay (µs) 

A 6 

B 64 

C 60 

D 10 

E 9 

F 55 

G 0 

H 480 

I 70 

J 410 
 
Note that the G delay is zero in standard mode. 
 
Since the IO operations are implemented in C and not assembly language, compiler 
optimizations and other factors could affect timing. It is recommended to observe the 
waveforms generated by each bit-level function with an oscilloscope, and adjust 
delays if needed. 

 
 

Software only 
implementation 

Initialization 

Bit-level functions 
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The bit transfer layer functions are implemented as shown in Figure 13. Note that the 
function “DetectPresence” both sends the “Reset” signal, and listens for the 
“Presence signal”. Note that all Bit transfer layer functions can address several buses 
at the same time. 

 
Figure 13. Bit transfer layer functions. 
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Two macros are included to drive the bus low and to release the bus. These are 
implemented as macros because they occur frequently, and the overhead caused by 
function calls is unwanted because of the strict timing requirements. 

In this implementation, all the timing details are taken care of by the UART module. 
To send a bit, the UART Baud Rate is set to the appropriate value, and the UART 
data register is loaded with a value that will generate the desired waveform as 
described in the “Generating the signals with a UART” section. 

To initialize the 1-Wire interface for the polled UART driver, the UART module has to 
be initialized with the right parameters. Enable transmission and reception, set data 
format to 8 bits, no parity, 1 stop bit and set baud rate to 115.2kBaud. 

This will cause the TXD pin to enter a UART idle state, which is a logic high. Slave 
devices will interpret this rising edge as the end of a RESET signal, and answer with 
a presence signal. 

All bit-level functions in the Polled UART driver are implemented through one 
common function called OWI_TouchBit. This function outputs the first input argument 
to the UART module, waits until UART reception is complete, and then returns the 

Polled UART implementation 

Initialization 

Bit-level functions 



 AVR318
 

 11

2579A-AVR-09/04 

received value. Each of the bit-level functions calls OWI_TouchBit with the value that 
will generate the correct waveform on the bus. 

The interface to these functions is the same as for the software only implementation. 
The ‘pins’ argument is however not necessary in the polled UART driver. A set of 
macros makes it possible to call these functions with or without the pins argument. If 
the pins argument is included, it will be removed by the macros. 

Note that many functions in this layer accept an argument of type unsigned char 
pointer. This pointer should point to an array of 8 bytes of memory that can be used 
by the function. Allocation, and sometimes initialization, of these arrays must be done 
by the caller. This document clearly states when the memory has to be initialized in a 
special way before calling a function. 

Figure 14. Byte transmission functions 
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All general ROM commands for standard speed communication are implemented. 

 
The simplest ROM command is the SKIP ROM command. It simply calls the 
SendByte function with the SKIP ROM command byte as argument. 

 
 
Flowcharts for the READ ROM and MATCH ROM commands are shown in figure 
Figure 15. 
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Figure 15. Read ROM flowchart 
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The flowchart for the SEARCH ROM command is shown in Figure 16. This function 
will find one slave device for each time it is run, until there are no undiscovered slave 
devices on the bus. The last time it is run, it will return 
OWI_ROM_SEARCH_FINISHED. In addition to the the ‘pin’ parameter, used to 
select which bus to perform the search on, two parameters must be passed to this 
function: ‘lastDeviation’ and ‘bitPattern’. These parameters control the slave device 
search. Refer to Table 4 to understand how to use these parameters to complete a 
full search for all slave devices.  

Table 4. bitPattern and lastDeviation usage 
 BitPattern lastDeviation 
First time Zero filled 8 byte array  0 

Consecutive runs A copy of the 8 byte array 
returned through bitPattern 
pointer last run. 

Value returned from 
SearchRom last run. 

  

The function is implemented in this way to give the caller maximum flexibility. The 
example software for the polled driver shows how it can be used to implement the full 
search. 
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Figure 16. Search ROM command 
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It is important to be able to generate the waveforms as precisely as possible. To do 
this, precise delays are needed. The number of clock cycles needed to delay for a 
certain number of microseconds is computed at compile time. When generating 
waveforms, some clock cycles are lost when pulling the bus low and when releasing 
the bus. These clock cycles are subtracted from the number of clock cycles needed to 
generate the delay. If the clock frequency is too low, this could generate a negative 
delay. A clock frequency higher than 2.17MHz is needed to be able to generate the 
shortest delays. 

The interrupt-driven UART driver has the same hardware requirement as the polled 
UART driver.  

The basic functionality of the interrupt-driven implementation presented in this 
application note is to automate transmission and reception of larger chunks of data on 
the bus. This is done in two Interrupt Service Routines (ISRs). A set of helper 
functions can be called to set up all the necessary parameters, and these ISRs 
completes the transaction automatically. It is possible to do a Reset/Presence 
sequence or transfer anywhere between 1 and 255 bits of data in one direction 
without intervention.  

To make the ISRs as simple as possible, they do not differentiate between 
transmission and reception. The UDRE ISR simply sends one bit from the data buffer 
every time it is run. The RXC ISR receives the same bit, and puts it back into the data 
buffer no matter which direction data was sent. During transmission, the data sent will 
be identical to the data received, and the data buffer remains unchanged. During 
reception, only ‘1’s should be transmitted, since the ‘write 1’ waveform is the same as 
the read waveform. The signal is sampled to find the value written by the slave 
device. This value is then placed in the data buffer. 

Three global flags signal the state of the 1-Wire driver: busy, presence and error. The 
busy flag is set as long as there is more data to transfer. The presence flag is set if a 
Presence signal is detected when sending a Reset signal. This flag remains set until 
a Reset signal on the bus does not return a Presence signal. The error flag is set 
when the UART receiver detects a frame error. In this situation, a new Reset signal 
should be transmitted on the bus. This will reset all slaves on the bus, as well as the 
internal state of UDRE and RXC ISRs. 

As ISRs should be executed as quickly as possible, more complex functions like 
ROM commands are not implemented in the ISRs. The included example code shows 
how such behavior could be implemented in a Finite State Machine (FSM). 

Flowcharts for the ISRs are shown in Figure 17 and Figure 18. The UART Data 
Register Empty (UDRE) ISR is run every time there is room for data in the UART 
transmission buffer. The UART Receive Complete (RXC) ISR is run every time data  
has been received and is ready in the UART reception buffer.  

Timing considerations 

Interrupt-driven UART 
implementation 

The interrupt service routines 
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Figure 17. UDRE Interrupt Service Routine 
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Figure 18. RXC Interrupt Service Routine 
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The helper functions set up some parameters that are necessary for the automated 
interrupt-driven transmission to succeed. After setting up all the necessary 
parameters, transmission is initiated by enabling the UDRE interrupt. 

Flowcharts for the helper functions are shown in Figure 19. 

Helper functions 
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Note that the ReceiveData function actually fills the data buffer with ‘1’s and calls the 
TransmitData function. The RXC ISR will sample the signal and place the value read 
from the slave device into the data buffer. 

Figure 19. Helper functions 
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The algorithm used to compute the two different CRC’s are described below.  

The crc is either set to 0, or to a CRC “seed”. This is explained below. 

1. Find the logical exclusive or between the lsb of the CRC and the lsb of the 
data. 

2. If this value is 0: 
a. Right shift CRC. 

3. If the value was 1: 
a. Find the new CRC value by taking the logical exclusive or of the CRC 

and the CRC polynomial. 
b. Right shift CRC. 
c. Set the msb of the CRC to 1. 

4. Right shift the data 
5. Repeat the whole sequence 8 times. 

 
This algorithm can be used to compute both CRC8 and CRC16. The only difference 
is the width of the CRC shift register (8 bits for CRC8, 16 bits for CRC16) and the 
value of the polynomial. This number will simulate the connection of the XOR gates in 
hardware. The value of the polynomial is 18h for CRC8 and 4002h for CRC16. 

The algorithms are implemented to find the CRC value of one byte at a time, but a 
CRC “seed” can be passed as an argument to the CRC routines. In this way the 
result of one CRC operation can be passed to the next one along with the next byte, 
in effect computing the CRC of an arbitrary number of bytes. 

CRC checking of 64 bit identifiers are implemented in OWI_CheckRomCRC. It simply 
computes the CRC8 value of the first 56 bits, and compares it to the last 8 bits of the 
identifier. 

CRC computation 
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Two code examples has been included that shows how to use the different 
implementations of the 1-Wire driver. 

The code example for the polled drivers will search the buses defined by “BUSES” for 
devices. The devices are stored in an array of type OWI_device. OWI_device is a 
struct containing information about what bus a device is connected to and its 64 bit 
identifier. The driver then searches through the available slave devices for a DS1820 
temperature sensor and a DS2890 digital potentiometer. If one or both of these 
devices are found on the bus, these will be constantly negotiated in an eternal loop. In 
each iteration, the temperature of the DS1820 is polled and the wiper position of the 
DS2890 is increased in a modulo 256 fashion. The temperature is output to PORTB, 
so it can be observed for instance on the LED’s of a STK500 development board. 

This code example is intended to show how the different parts of the driver can be 
used. The code is very general, and not optimized for the objective. Please note that 
because of this, the code example will not fit on a device with less than 4kB of 
program memory. The driver is, however, fully compatible with all AVRs, including 
1KB devices. 

In the interrupt-driven example, a finite state machine (FSM) is implemented. If the 
driver is not busy transmitting data on the bus, this FSM is called from an eternal 
loop. When the driver is busy, the FSM will be skipped to allow any other code to be 
run. The FSM itself assumes that there is a sole DS1820 temperature sensor 
available on the bus. It will read the current temperature, and compute the CRC to 
make sure that it was read correctly. The temperature is then put in a global variable. 
Whenever the driver is busy, the eternal loop outputs the temperature to PORTB, so it 
can be observed for instance on the LED’s of a STK500 development board. 

Getting started 
This section outlines how to get started with the example code included with this 
application note. 

The source code can be downloaded as a zip-file from www.atmel.com. Unzip the 
source code to a directory of your choice. Please make sure that the directory 
structure within the zip-file is preserved. There are three subdirectories: “polled”, 
“interrupt_driven” and “common_files”. “common_files” contains CRC functions, 
common definitions and device specific defines, used for the UART drivers. “polled” 
and “interrupt_driven” contains the drivers and code examples. 

Each directory contains a file named “source.doc”. These files contain the 
documentation of the source code. Please consult this documentation for details on 
how to use the different drivers. 

A short description of each file in the polled driver is shown in Table 5. 

Code examples 

Polled example 

Interrupt-driven example 

The source code 

Polled driver 
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Table 5. Polled driver files 
File Contains 

main.c Code example for the polled driver. 

OWISWBitFunctions.c Implementation of the software only bit-level functions. 

OWIUARTBitFunctions.c Implementation of the UART bit-level functions. 

OWIBitFunctions.h Common header file for OWISWBitFunctions.c and 
OWIUARTBitfunctions.c. 

OWIHighLevelFunctions.c High level functions. 

OWIHighLevelFunctions.h Header file for OWIHighLevelFunctions.c. 

OWIPolled.h Configuration header file for the polled drivers. 

source.doc Documentation of the source code in this folder. 
 

To get started with the polled drivers, follow the steps below: 

• Create a new project in IAR embedded workbench. Depending on the version, this 
might require that a workspace is already created. 

• Add all *.c files from the “polled” and “common_files” directories. 
• Select the project from the project browser. Right click on the project and select 

options to bring up the project options dialog. 
• Under “General/Target”, make sure that the correct device and memory model is 

selected. 
• Under “General/Library configuration”, check the “Enable bit definitions in I/O 

include files” option. 
• Under “General/System”, set the Data stack (CSTACK) to 0x40 and the Return 

stack (RSTACK) to 0x10. This is required to run the memory-intensive example 
code. Smaller stack sizes may be sufficient for other application utilizing this driver. 

• If AVRStudio is used for debugging, the output file format must be changed. Under 
XLINK/Output, select Format/Other, and then select “ubrof 8 (forced)” from the 
“Output format” drop-down box. 

• Open the file “OWIPolled.h” for editing and locate the section named “User 
defines”. 

• Choose between software only or UART driver by uncommenting one of the lines 
as described in the file. 

• Move down to the section corresponding to the selected driver. 
• Adjust the defines in the section according to the hardware setup as described in 

the file. 
• The project is now ready to be compiled. 
 

A short description of each file in the interrupt-driven driver is shown in Table 6. Interrupt-driven driver 
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Table 6. Interrupt-driven driver files 
File Contains 

main.c Code example for the interrupt-driven driver. 

OWIInterruptDriven.h Configuration header file for the interrupt-driven driver. 

OWIIntFunctions.c Implementation of the interrupt-handlers and helper functions. 

OWIIntFunctions.h Header file for OWIIntFunctions.c. 

source.doc Documentation of the source code in this folder. 
 

To get started with the interrupt-driven driver, follow the steps below: 

• Create a new project in IAR embedded workbench. Depending on the version, this 
might require that a workspace is already created. 

• Add all *.c files from the “polled” and “common_files” directories. 
• Select the project from the project browser. Right click on the project and select 

options to bring up the project options dialog. 
• Under “General/Target”, make sure that the correct device and memory model is 

selected. 
• Under “General/Library configuration”, check the “Enable bit definitions in I/O 

include files” option. 
• If AVRStudio is used for debugging, the output file format must be changed. Under 

XLINK/Output, select Format/Other, and then select “ubrof 8 (forced)” from the 
“Output format” drop-down box. 

• Open the file “OWIInterruptDriven.h” for editing and locate the section named “User 
defines”. 

• Change the defines in the “User defines” section to reflect the hardware setup. 
• The project is now ready to be compiled. 
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