Для грамотного использования микроконтроллера необходимо иметь представление об электрических характеристиках его выводов. Эти характеристики определяют максимально допустимый втекающий/вытекающий ток и уровни входных/выходных напряжений. От них зависит что и как можно подключать к микроконтроллеру, и к чему это приведет. 
   Сегодняшний материал посвящен как раз этой теме. Данные, приведенные ниже, взяты из описания на микроконтроллер Atmega16 в разделах Electrical Characteristics и Typical Characteristics. Для более детального изучения этого вопроса, рекомендую обязательно их посмотреть.

   Итак, давай разберем последовательность расчета бестрансформаторного источника питания, рассмотренного в предыдущей статье. Описанная метода не претендует на истину в последней инстанции и может отличаться от других источников. Дополнительную информацию по такой схеме можно почерпнуть на зарубежных ресурсах, погуглив в сети запрос "capacitor power supply".

бестрансформаторный источник питания

   Устройства на микроконтроллерах требуют для своей работы постоянного стабилизированного напряжения величиной 3.3 - 5 Вольт. Как правило, такое напряжение получают из переменного сетевого напряжения с помощью трансформаторного источника питания. Данный источник питания (при соответствующем выборе компонентов) позволяет получать большие токи и имеет гальваническую развязку от сети переменного тока, что немаловажно для безопасной работы с устройством. Однако он имеет большие габариты, благодаря трансформатору и фильтрующим конденсаторам. 
   В некоторых устройствах на микроконтроллерах гальванической развязки от сети не требуется. Например, если устройство представляет собой герметичный блок, с которым конечный пользователь никак не контактирует. В этом случае, если схема потребляет относительно невысокий ток (десятки миллиампер), ее можно запитать от сети 220 В с помощью бестрансформаторного источника питания.
   В этой статье мы рассмотрим принцип работы такого источника питания, последовательность его расчета и практический пример использования.

схема бестрансформаторного источника питания

Майкл Барр

   Сторожевые таймеры могут быть подходящим решением для встраиваемых систем, которые не могут постоянно находиться под присмотром человека.

   Большинство встраиваемых систем должны полагаться на свои силы. Во-первых, если программное обеспечение зависло, не всегда существует возможность дождаться того, кто бы его перезапустил. Во-вторых, некоторые из устройств, например такие, как космические зонды, попросту не достижимы для людей-операторов. И, в-третьих, скорость, с которой оператор может перезагрузить систему, может быть слишком низкой, чтобы удовлетворить временным требованиям по приведению изделия в рабочее состояние.

   Сторожевой таймер – это элемент оборудования, который может использоваться для автоматического обнаружения аномалий программного обеспечения и сброса процессора, если что-то произойдет. В общем случае, сторожевой таймер основан на счетчике, который ведет обратный отсчет от какого-либо начального значения до нуля. Встроенное программное обеспечение выбирает исходное значение счетчика и периодически перезапускает его. Если счетчик достигает нуля до того, как его перезапустят, то предполагается, что программное обеспечение неисправно и процессор перезапускается. Процессор и программа, которую он выполняет, перезапустятся точно так же, как если бы это сделал человек-оператор. 

Barr Michael "Closed-Loop Control"

   Многие встраиваемые системы реального времени применяются для управления объектами. Такие системы обычно используют обратную связь для получения информации о состоянии объекта. 
   Обратная связь может быть реализована  в виде аналогового датчика, предоставляющего системе данные о положении, напряжении, температуре, или любом другом подходящем параметре управляемого объекта. 
   Показания датчика считывается с помощью аналого-цифрового преобразователя, и каждый замер обеспечивает систему дополнительной информацией, на основе которой она принимает управляющие решения.

Страница 3 из 7