Когда АЦП делает выборки сигнала, он кодирует его дискретными шагами. Это вносит некоторую ошибку, известную как ошибка квантования. Использование нормального усреднения будет только сглаживать флуктуации сигнала, тогда как метод оверсемплинга и децимации будет увеличивать разрешение. Суть метода заключается в дискретизации сигнала с более высокой частотой и вычислении новой выборки сигнала на основе полученных дополнительных выборок. Требуемая частота дискретизации может быть найдена по формуле 3-1. Сложение дополнительных выборок и сдвиг результата вправо на n, будет давать результат с разрешением, увеличенным на n разрядов. 

   Микроконтроллеры AVR фирмы Atmel имеют в своем составе 10-ти разрядный аналого-цифровой преобразователь (АЦП). В большинстве случаев такой разрядности достаточно, но иногда возникают ситуации, когда требуется более высокая точность. 
   Существуют специальные методы обработки сигналов, позволяющие увеличить разрешение измерений. С помощью метода называемого “оверсемплинг и децимация” данная задача может быть решена без использования внешнего АЦП. 
   В этом руководстве рассмотрена теория и практическое применение данного метода.
   Микроконтроллеры AVR имеют возможность самопрограммирования, то есть могут самостоятельно изменять содержимое своей flash памяти. В практическом плане это означает, что, написав для микроконтроллера специальную программу-загрузчик (так называемый бутлоадер), мы можем обновлять его прошивку, не используя программатор. Причем интерфейс, по которому в микроконтроллер будет передаваться код программы, может быть совершенно произвольным. Обычно для этих целей используется один из аппаратно поддерживаемых интерфейсов, например, SPI, I2C или RS-232. Однако существуют и загрузчики, основанные на программной реализации таких интерфейсов как USB и 1-Wire.
   Для микроконтроллеров AVR существует несметное количество готовых бутлоадеров, и в большинстве случае мы можем спокойно использовать их в своих устройствах, не утруждая себя написанием собственного загрузчика.  В этой статье мы рассмотрим один из таких бутлоадеров, который разработан и свободно распространяется фирмой Chip45, и разберемся как его использовать. 
  При разработке электронных устройств иногда бывает ситуация, когда выводов микроконтроллера не хватает, а использовать другой чип нет возможности. В таких случаях обычно прибегают к схемотехническим трюкам или используют дополнительные внешние микросхемы, например, расширители портов, сдвиговые регистры или мультиплексоры.
   Расширители портов позволяют добавить микроконтроллеру “полноценные”  выводы, работающие как на выход, так и на вход, и, как правило, управляются с помощью стандартных интерфейсов - SPI  или I2C. Это очень удобно, но подобные микросхемы не из дешевых. 
   Бюджетный вариант – использование сдвиговых регистров и мультиплексоров, однако в этом случае полученные дополнительные выводы будут работать только на выход или на вход (исключение составляют универсальные сдвиговые регистры). Впрочем, в большинстве приложений этого вполне достаточно.  
   В этой статье мы рассмотрим расширение портов микроконтроллера с помощью сдвигового регистра 74HC595.  Им можно управлять как стандартными выводами  микроконтроллера, так и с помощью SPI модуля. Также его можно каскадировать, соединяя несколько микросхем в один большой регистр. 
   Чтобы пример был наглядным, с помощью регистров 74HC595 к микроконтроллеру будет подключен семисегментный индикатор. 


   Теперь вы имеете общее представление о последовательном периферийном интерфейсе и можно перейти к рассмотрению SPI модуля. 
   SPI модуль микроконтроллера AVR atmega16 использует для своей работы 4 вывода - MOSI, MISO, SCK и SS. Когда модуль не задействован, эти выводы являются линиями портов ввода/вывода общего назначения. Когда модуль включен, режим работы этих выводов переопределяются.

Страница 16 из 37